
7 / - 94 7" ITH -ORDER EXTENDED LINE AR ZATION i.U) JO HNS HOPKINS LONIV 1/1'
BALTIMORE RD DEPT OF ELECTRICAL ENGINEERING AND
COMPUTER 5 CIENCE J1 MANG ET AL. $I MAR 00

ULMIFIED AFOSR-TR-00-9435 RFOSR-S?-9101F/124 Nmhhhmhhhl/012/ M



% %~

ILI..

1411

U9 m

Lf

1111 %VPj r



II

AD-A194 786 REPORT DOCUMENTATION PAGE f

sa ' A~hRIY b. RESTRICTIVE MARKINGS GlIT.~F r
48. 4C CASSIKATON ATHORTY 3 FISTRIB@UTION I AVAILABILITY OF REPORTiz I Approved for Public R elease;-1P

2b. DECLASSIFICATONIOOWNOGRADING SCmEDULE Distribution unlimited

. PERORMING OfGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

'a NMEOPPEFOMIG RGNIATONAMO R-Th 88-V 435
6@. AMEOF PRFOMINGORGNIZAION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Johns Hopkins University j OfI applicable) EOPN

It. ADDRESS (Chy, State, and ZIP'Code) 7b. ADDRESS(CtV, State, and ZIP Code)

Baltimore, Maryland 21218 Bldg. 410
Bolling AFB, DC 20332-6448

SNAME Of FUNDING/ SPONSORING Oab. OFFICE SYMBOL -9. PROCUREMENT INSTRUMENT IDENTIFIMCATION NME
ORGANIZATION O olcbo

AFOSR NM oicbe AFOSR-87-0101

at. ADORESS (Oty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Bldg. 410 PROGRAM PROJECT TASK wRK UNIT

Bolin AF, C 033-648ELEMENT NO. NO. NO.ACESONo
Boilng F!, C 2332-44861102F 2304 I A . O

11i. ITLE (Include Security CQaspliation) Alf

K-th Order Extended Lineariz.ation (U)

12. PERSONAL AUThOR(S)
Rugh, Wilson J.

'1a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPOR 1 (Year, Motnth. Day) Sg. PAGE COUNT

_1nnrnn1 Renrint [ FROM 3/1/87 To 2/29/84 1988, March 45 '

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1S. SUBJECT TERMS (Comznu. on mrev' if noeavy and identv1y by block number)
FIELD GROUP SUs-GROUP

Nonlinear Control Systems; Control Theory,~

19. ABSTRACT (Contlnue onl revorn of necessary and javnufy by block number) 1

Abstract: For a given nonlinear system wE"consider the
design of a nonlinear control law such that the followingT C
properties hold. First, as in the extended linearization DI
method. linearizations of the closed-loop system about L TS-
constant operating points of the closed-loop system (I EuF
achieve specified, linear design objectives. Second, the MY018
Taylor series expansion of the closed-loop state equation MAY_0__t
abolut any constant Operating point is such that terms of W
orderZ 3....k are zero, or at-least are minimized in a
certain sense. Conditions under which this can be .

achieved. while simple to state, are restrictive. / .

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION
(1UNCLASSIFIED)JNLIMITED C3 SAME AS 92 S ERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHoO Icu0e Area Coe) 22c. OFFICE SYMBOL
MaJ. James M. Crowley (202)767-5S025 NM

00 FORM 1 4 73. 4 MAR 83 APR ec . - o Ia uftiI 9haustd. SEC.JRITY C'ASSIFCATION OF -4#S D AGE

All 4, ob"IM



AOSR-.r- 8 8- 0 435
Kth.Order Extended Linearization

Jianliang Wang and Wilson . Rugh

Department of Electrical & Computer Engineering
The Johns Hopkins University

Baltimore, Maryland 21218
(301)338-7004

Abstract: For a given nonlinear system, we consider the There are at least two motivations for pursuing such
design of a nonlinear control law such that the following a generalization. The first is that the selection of non-
properties hold. First, as in the extended linearization linear control laws corresponding to a pazameterized
method, linearizations of the closed-loop system about linear control law in an extended-Linearizati6n design is
constant operating points of the closed-loop system highly nonunique, and a natural method of restricting the
achieve specified, linear design objec:ives. Second, the choice would be valuable. Second, a closed-loop system
Taylor series expansion of the closed-loop state equation with, say, second-order terms zero is more accurately
about any constant operating point is such that terms of described by its linearization (first-order terms) in a
order 2, 3 .. k are zero, or at least ace minimized in a sufficiently-small neighborhood of the constant operating
certain sense. Conditions under w_-ich this can be point family.
achieved, while simple to state, are res-:ictive. In Section 2, necessary and sufficient conditions on a

parameterized linear control law are given for the
existence of such a nonlinear control law, and a construc-

1. Introduction tion is given for the affirmative case. Related results for
We consider generalizing the ex,.-nded-linearization nonlinear observers are discussed in Section 3. Both sec-

design approach for nonlinear syste-ns that has been tions refer to the Appendix where existence results and
developed in recent years. [1 - 3] Th approach can be solution constructions for a special type of partial
described briefly as follows. The fiornear system to be differential equations are given.
controlled is represented by its famL'.1 of linearizations The following differentiation notation will be used.
about a family of constant operating points (equilibrium If f (x):R" - RP, then 8f/f denotes the pxn Jacobian
points). Then a family of linear contrgl laws, parameter- matrix whose (ij)-entry is the partial derivative af,/&,.
ized by the constant ,perating point, .s computed so that For n = 1, a will be replaced by d, and an overdot often
the design objectives are satisfied by the closed-loop will be used if the independent variable is time t. If
linearization family at, each operating point. Finally, a f(xy):R-xR - RP, then af/ denotes the pxm matrix
nonlinear control law is computed for the original non- *with (ij)-entry af,/aJ, and af/qla is the pxn matrix with
linear system so that the resulting closed-loop system has (ij)-entry af,/&y. Evaluation of a derivative is indicated
.the designed closed-loop linearization at each operating in the customary fashion, for example, (f/&)(xy).
point. Relying on the accuracy of the linearized model, To avoid counting the order of continuous
this nonlinear closed-loop system should satisfy the differentiability, all functions will be assumed sufficiently
design objectives in a neighborhood of the family of con- smooth that indicated partial derivatives are continuous.
stant operating points. Indeed, for stable closed-loop sys-

tems with slowly-varying inputs, this intuition is sup-
ported by the results in [4]. 2. State Feedback

Our generalization of this approach, called kg-order We consider a nonlinear system of the form
extended linearization, involves requiring that the Taylor
series expansion of the closed-loop state equation about x - f(i, u), xER", uERm, (2.1)
any constant operating point in the family satisfies an
additional property; namely, that terms of order y =h) yRP (2.2)
2.3. k are zero, or at least are minimized in a certain where f:RxR-R", h:R-.RP, l<m <psn < oo with
sense. f (0, 0) - 0, h (0) - 0. Suppose that this system has a con-
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stant operating point family second-order terms can be computed as follows. (For
w i } convenience we make use of the notation u - k(x.w),((Q), x(a), y(r)], a(2.3) u(cr) = k(x(a),w(a)).)

where r is an open set in Rq, 1<q5m, 0r, and 00) ) = af(x.u)
u: r"R, x: r-R%, y: r--RP with u(0) = 0, x(O) &0, a) u(O)
y(0) = 0. That is, for c E r, + f(X .f(x u)

Sf(x(a), u(a)) du, I I>(m ) + u&
,~ 8.(8U,)~(a) (X= O I a :I( K~)

We will consider nonlinear feedback control laws of the Upon setting,
form

u = k(x, w) (2.4) 0,x',w x(a) r O £ (2.9)where k: R"xW-R'" with k(0, 0) -- 0, and wR m is the a W(bt)
wrkRR- wtk 0)0ad R'sh there may .or may not be a solution for K" (a), but thenew input with constant operating point family w(C,), a E r, following is either a solution, or is such that thew(O) = 0, such that u(a) = k (x(a), w(a)). For a Er, let Euclidean norm of the left-hand side of (2.9) is minim-

ucaf r)) = F -'(x(a), u(a)) = G ized at each aE r. (The superscript T denotes transpose.)

ah(x) H(,) K" (ct) =-[G T(C)G (Cr)] .Gr(.)
& a H

aa uk + X(O) k.(a) +, ()(x(a), w(-)) K(a), -k(x(a), w(a)) = V(a) (2.5) 1 Ou 'auao. J X(G)KI(Cr) (")

We assume that, for aEr, M(Cr) is nonsingular, + m Af(x u) Ki(Cr)K], i,] = 1.n (2.10)
rank G(a) = m, and 2 Z3u8 I

(!t (L Adopting a partitioning notation forAM(a) sirmilar to (2.7),
rank jj rank j = q (2.6) and setting
, ( ,) [ -- () of fx.k (x, w ))

Oki a, (.' ) 0, aEr (2.11)

For simplicity and concreteness, we first consider a2 f(x k(x w)) ,,r2)
second-order extended linearization. The parameterized I
linear gains K(Ca) and M(a) in (2.5) are specified by the
design objectives for the closed-loop linearization, and gives
conditions for the existence of a corresponding nonlinear f
control law (2.4) are given in [6]. However, we want to K""(a) = -[Gr(a)G(c)] r
impose further conditions on the nonlinear control law in aua, - a)
relation to second-order terms in the Taylor series expan- O 1 txf (2.13)
sion of the closed-loop system state equation (2.1), (2.4) +, au 2 X), r IJ}l , .
about [x(cf), w(a)], a E r. Using the partitioning notation 1u)1

K r() [K(a) ... KK\) = [()G ((a)] "G(r))

_ &'f(x.u)
K1,(Cr) I u (o4) , (r)MI(Cr) ij= .m (.)

< _i. , n (2.7) Equations (2.10), (2.13) and (2.14) specify K"(C,),
K,, (a)J K'(ae) and K"' (a) to cancel, or minimize, second-order

terms in the Taylor series expansion of the closed-loopand letting for example nonlinear state equation (2.1), (2.4) about Cx(C,), w(C,)I.
K" k(a) - (a) )) Now the question is whether there exists a k(x, w) with

((a), such second-order partial derivatives. That is, we need to
83k consider the existence of a k (x, w) that satisfies the set of

K w(a) - 0 (X(a), w(-)) partial differential equations for a E r:

83 - k k(x(a), w(a)) - u(c) (2.15)K ()= a----(x() ,w(Cr)) (2.S) 8
&-(x(a), w(a)) = K(a) (2.16)
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-xa), (2.17) yield a feedback linearization family, [6], and (2.22),
X w(0)) M( ) (2.23), (2.24) are satisfied by the smoothness assumption

on k(x, w). So the only conditions related to the cancella-

(x(a ), w(a)) = '(a), i, I = 1. (2.18) tion, or minimization of second-order terms are (2.25)
~ij and (2.26). To consider these further, substitute (2.10),

c._2k =(a)) 1..... n (2.19) (2.13) and (2.14) into (2.25) and (2.26). After some
x) ) 1. manipulations, (2.25) and (2.26) can be simplified to,

83k, 
respectively,

(x(a), w(a)) K"" a) , 1, 2 ... m (2.20) Gr(-) -[F(,) + G C-)K ()] 0 0, s = ... q (2.28)

with

u(0) o, x() = 0, w(0) G = 0 r) -[()M(a)J = 0, s = I. q (2.29)

By Lemma A-1 in the Appendix, and Corollary 3.1 in (6], If there exists a k (x, w) such that second-order terms inwe can state the following result. the Taylor series expansion of the closed-loop state equa-

tion about [x(,t), w(a)] are zero, then (2.9), (2.11) and
Proposition 2.1: There exists a solution k(x, w) for the (2.12) hold. Therefore
set of partial differential equations (2.15)-(2.20) if and
only if, for ae r, F(,) + G(a)K(a)]

-a) K(a)-(a) + M(a)-(a) (2.21)_________8a ao = , a. af~x,k~x,w )] 0.'
K (a) = (), i, j=1 ..... n (2.21) a

K"' (a) = K*'(a), i, f = 1.m (2.23) + m 8f(x.k(x.w)) _(a,),

K 1(a) = K ' n... (2.24) k.I #3Wk

K )K () j .... =0, S = 1 ..... q

=)+ K (a).(a) and similarly,

= 1. n (2.25) (G (a)M(a)] = 0, s 1. q
aM, #3ax m #3w._-i

am ax~a))-(a' + K'a* j-1 6a Corollary 2.2: Suppose that there exist solutions K"'(a),
1. m (2.26) K"I(a) and K'"(a) to the linear algebraic equations

(2.9), (2.11) and (2.12), respectively. Then there exists a

where x, (a) and w)(a) are the f ' entries of x(a) and w(a), k (x, w) such that second-order terms vanish in the Taylor

respectively. Furthermore if these conditions are series expansion of the closed-loop state equation (2.1),
rstivdoel utmo igivn b e o(2.4) about [x(a), w(a)] if and only if, for a e r,
satisfied, one sotion is given by

k(x.w) = u(z-(z)) (a) K(a)-() + M(a)-(a) (2.30)

+ K(z "'(:))Ix -x(z "(z))] + M (z " (:))[w -w(z(:))] F (a) + G (a)K(a) = constant matrix (2.31)

1 + n - G(a)M(a) - constant matrix (2.32)• + E ' ( .-()M ,  " 'V( (: ))][x j x (Z  "(Z))]

+ . w,(z4(z))[x,. x,(z'(z))][w .w,(z'(':))] It is straightforward to derive conditions, similar to

(2.21) through (2.26), for canceling, or minimizing all
,m expansion terms of order 2 through k (k>2) by using

+ 1.E K""#(z l(z))[w -w(z4 (z))][wj-wJ (z1 (z))](2 "27) Lemma A.2. Of course, the conditions become more res-
2-- trictive as k increases. Solving algebraic equations similar

where z(a), z:r - R4 is an invertible function which is to those in (2.9), (2.11) and (2.12), and substituting into
formed by selecting the components of x(a) and w(a) the conditions for canceling or minimizing all expansion
corresponding to the q Linearly independent rows in (2.6), terms of order 2 through k, yields the following observa-
and zCRq consists of corresponding components bfx and tion.
W. Remark 2.3: Suppose there exists a k(x, w) such that all

terms of order 2 through k (k >2) in the Taylor series
Note that (2.21) is the condition that K(a) and M(a) expansion of the closed-loop state equation (2.1), (2.4)
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about [x(c), w(c)] are zero. Then there exists another p

k(x, w) such that, in addition, the k + 1 '-order terms are E2AY "(@)Hk(a)H/(a)- (, (x(a), u(,))

zero, or at least are minimized. Whether the k + 1-order 
ar 

-'

terms are zero or minimized solely depends on whether (a 0, , I = 1. n (3.9)

there exist solutions to linear algebraic equations an.io- (, 13

gous to those in (2.9), (2.11) and (2.12). where H.j(,) is the (ii)-entry of H(a) and, similar to the
notation/en(a) in last section,,4 A"(a)"s are second-order

partial derivatives of a (Z y, u) evaluated at
3. State Observation [x(a), y(-), u(-)]. Applying Lemma A.1, necessary and

Using the idea of extended linearization, various sufficient conditions for the existence of a a (2, y, u) such

forms of nonlinear observers have been proposed for the that (3.4), (3.5), (3.6), (3.7) are satisfied are
nonlinear system (2.1), (2.2). [1,7] These nonlinear
observers are obtained through different methods of con- A yt (Q) Aj'O'(,), i, j = 1. p (3.10)

structing nonlinear systems corresponding to the Fn)+N(a)H(,)=aconstantmatrix (3.11)
parameterized linear system 

- t)

dr-, X(-)] = F (a) + N (a)H a] x(-)] 3. a)-[AV()" H ) ()

+ G(,u-u(a)-N(a),-y(a)1, ER n  "(A"u'(a) "'" (a) ]  (,1), i 1. p (3.12)

= x, .9 ERt (3.1) where Ni(a) is the ih column of N(a).. Obviously, these
conditions are restrictive. In addition, the algebraic equa-

where .X(a) = x(a), (a) = y(a), and N:r-R" ' is chosen tions (3.8) and (.3.9) must be satisfied. This situation

such that F(a) + N(a)H() has desired eigenvalues. indicates that second-order extended linearization is

Clearly (3.1) is precisely the form of a parameterized more restrictive in the observer case than in the state

linear observer for the linearization family of the non- feedback case. Of course, the usual approach is to use

linear system (2.1), (2.2). It is not hard to show that a the plant dynamics f (x,u) in forming a (..y,u), as in [1,7],

nonlinear system corresponding to (3.1) always exists. [71 and this further restricts the possibility for second-order

We consider the problem of constructing a non- extended linearization.

linear system from (3.1), that is, a nonlinear observer for
(2.1), in the (Yrea formin g~eneralfo

4. Conclusion

X =a(,y, u) In the state feedback case, a nonlinear control law

" = 1h (2) (3.2) that yields zero second-order terms in the c.osed-loop

t tstate equation, for example, must be such that the

with the property that second-order terms vanish, or at closed-loop linearization family is independent of the
least are minimized, in the Taylor series expansion of the closed-loop operating point. This is a stringent require-

error equation ment, and it indicates that a different approach is needed
d x f(x , a , h(x) u (3.3) to further specify desirable properties of nonlinear con-
-Ctrol lavs arising from the extended-linearization design

about = () = x(a), x = x(a), u = u(a), a e r. Assuming method. For observer desig. the requirements are even

that H(o) is of full rankp, a straightforward computation more restrictive. When second-order terms can only be

thatH(~ isof fll ankp. acomutaion minimized, then the conditis are not so simnoie to state,
• shows that setting second-order terms to zero in the Tay- but are restrictive none the less.
lor expansion of (3.3) about fx(a), x(a), u(a)] gives

AM'(,.)O, i, j= 1 . (3.4)
5. Appendix

A '(a) =0, i = .. n, J = (3.5) Suppose we are given a set of functions g0 (a,); g,(c),

A M'"(a) = 0, i I . , f I. m (3.6) i = 1. n; g(a), i, j - . n, from the open set

oEcRq to R such that gO(O) = 0. Suppose also that

A u(Q), i, j m (3.7) x:r-R" is given with x(0) = 0 and rank ax/&0a) - q, for
A5ulouj c E r. We consider the following partial differential equa-

P tion for v (x), v R'"-R,F(,,(,,).k~a U(,)) ,-
JL akV (x(a)) =gl(,,) (.1.,

k -1,.... . P (3.8) ( (°a))g g (), ...
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821, at, 8 , (z z 1-
( )= g(Q), i, = 1. n (A.3) q a ' (z )) ()(Z

,a -)at 8z 1(Z) (Z' a J
Letting .2g0  8 z .zI

gl.) Ig(Q gl, .. g1 (COt IrI (A4 FE(}) Z Z)= [n() g( ) (A.5) = ,II 1 1 .

for notational convenience, we have the following result. --- (Z) ()i

Lremma AA: There exists av(x) satisfying (A.l) - (A.3) if + 8g 8z'-( " a-
and only if, for a E r, - (z) " ' (

0()-( (A.7 "'t z) z.i91(_) = 1 (( A)  
n at(. ___. -,

8x -J .z () (Z)(g. ax. (o[A7) i at a(-zz &j~ ))a

g--(a) =ga)-(a), i = 1. n (A.8) at1  (Z ai

+ Eg,(z'(z))" - .- l (z(z))
Proof: (Necessity) The conditions (A.7) and (A.8) follow 2'1 . 8zr1()8t, (z)

directly from calculating ag°/8Q(a) and tg,/ac() using a'i ( )I ax, (z a(z)) (z)]

(A-1), (A.2), (A.3), and the chain rule, and (A-6) follows at(z at (ajat
from the smoothness assumption on v (x). a , I

(Sufficiency) Since rankx/So(r) = q we can form an + g ",i, (z(z))[ I - (z'1(z))--'7(z)]
invertible function z(), zRq- R? by choosing the com- ,,i:,- a (Z) &j
ponents of x(a) corresponding to the q linearly indepen- at" '( )
dent rows in 8x/8o(a). Let z be the vector consisting of [
corresponding components ofx. We claim that at 1  ()

V(x) = g(z "(z)) + g'(z " (z)) - x(z -'(z))l + 0 (x- x.(z 1(z)))

I Evaluating at x = x(a) and using (A.7), (A.8) will give

- g;i, (z (:))[x, -x,,(z1(z))][xi, -x, (z'(:))] (A.9) (A.3) to complete the proof. 0

is a solution. Obviously (A1) is satisfied, and (A.2) can In fact, Lemma A1 can be generalized easily to the
be shown by using (A7). To show that (.k3) is true, let case where all partial derivatives of v(x), through order k,
o (c) denote terms of the same order as c as c-0, and are specified. That is
compute as follows. v (x(a)) = g(C)

(x =(z "(:))---(z)__4'y! r,(x) = (Z) x~) = gl(a) =I... n
Cat-, Z") ac,ac

ag ' v.1

(z( (z))-- -(z)x,, - x,,(z' (z))] __ ,,_,O. I z "__)& ja tc ,t- , N -~) ) A , g ( a ) '  l i . . n

at x, az"
gt (z' (z))[--(- -( (Z)

,,., z " (z) z (Z) )

•~~~ ... .i

-,,.,,. Lz (.) at

[xi, - x., (z":))J ix, x,(z (z))] ' i, 1 n (A.1O)

A M ",) Ix,, ( az where the notations and assumptions are as in Lemma" - ,,(z'*1(z))[ at , O -(Z) (z1 (z)'Z
', at,,('''atA-)A.

Lemma A.2: There exists a v(x) satisfying (A.10) if and

+ .- gT,,,(z (z))[Xi, -(z (Z))] only if, for cE r,
T,
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